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Bubble rise under an inclined plate 
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We extend existing measurements of bubble rise velocity or, equivalently, drag in 
the spherical-cap regime to include the effects of rise under an inclined plate which 
both changes the bubble shape and the effective buoyancy force in the direction of 
bubble motion. As found previously for rise in inclined tubes for example (Zukoski 
1966) there is an angle of inclination for which the rise velocity is a maximum. We 
propose, also, an inviscid model that appears to describe the results adequately, as 
is the case for the spherical-cap regime in an extended fluid (Davies & Taylor 1950). 

1. Introduction 
When a bubble rises in an extended fluid its characteristics are reasonably well 

understood and have been the subject of numerous studies (see Clift, Grace & Weber 
1978 for a comprehensive review). In particular, it is known that if the Bond Number 
gApDE/a is greater than 40 and the Reynolds number (UoD,/u)  is greater than 150 
the regime of 'inviscid', spherical-cap bubbles is reached and simple results are 
obtained that have been confirmed many times. Here g is the acceleration due to 
gravity; Ap the density difference between the bubble and its ambient fluid; D, is the 
equivalent spherical diameter, i.e. the bubble volume ( V )  is id):; a is the surface 
tension; U, the velocity of rise of the bubble and v the kinematic viscosity of the 
surrounding fluid. Thus the seminal calculation of Davies & Taylor (1950) gives the 
velocity of rise as: 

(1) 

for an air bubble rising in a low viscosity fluid such as water, where R is the radius 
of curvature of the central part of the spherical cap (see comments on this calculation 
in QQ4 and 5). Improvements (Collins 1966) on this result are also within the 
experimental scatter and appear to describe the experimental results slightly better, 
although Clift et al. (1978) suggest that the simpler Davies-Taylor result is more than 
adequate for most purposes. If the spherical cap is assumed to be a segment of a 
sphere then the total plane angle it subtends at  the bubble centre of curvature is 100' 
for the parameter range of interest. Under these circumstances the velocity of rise 
can then be related to the bubble volume (U, = 0.79(gVi)i) and the equivalent 
diameter (U,  = O.7l(gDe);). By equating the buoyancy force (&Do",gAp) to the drag 
force on the cap ( & I ~ $ T D E C ~ ) ,  where C, is a drag coefficient, one finds: 

u - 2  R t  
0 - 3(9 ) 

There are many practical situations where a bubble, such as the one discussed 
above, may, during some part or all of its trajectory, be forced to rise in a more 
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constricted geometry. A number of cases are discussed in Clift et al. (1978, chapter 
9) ; these include bubble rise in tubes of various diameter ( D ) ,  such that an extensive 
range of DJD is covered, as well as a range of tube inclinations. However, the one 
case that appears to be missing is the one that is the subject of this paper, namely, 
bubble rise under an inclined plate placed in a large container. Here the effects of all 
of the walls, except the inclined one, are negligible. As we will see, this case has some 
features in common with the well-established spherical-cap regime and some quite 
subtle differences. It is related to the study of Maneri & Zuber (1974) who, however, 
constrained the bubbles laterally by allowing them to rise between vertical sidewalls 
that were quite close together (see $2). 

In  $2 we present the experimental apparatus and procedure, in $3  the basic results, 
in $ 4  a simple theory and in $5 we discuss thc dynamics of the flow and its 
relationships to existing results. 

2. Apparatus and procedure 
The water-filled tank used in these experiments is shown in figure 1. It consists of a 

Lucite box 1.22 m long, of cross-section 32 em (in the experiments Maneri & Zuber 
(1974) this dimension was of the order of 1 em) x 17 em, hinged part way along one 
long side so that i t  could be held a t  various angles to  the horizontal (a) from 5" to 
90". Bubbles of known volume were injected by hypodermic syringe and needle into 
an inverted hemispheric,al cup which was then rapidly turned to release a bubble into 
the lower part of the tank. The motion of the bubble was followed by recording its 
image on video tape using a camera, with an internal clock, mounted perpendicular 
to the inclined surface. Under some circumstances images were recorded by a 35 mm 
SLR camera with a motor-drive and flash attachment. The bubble motion was timed 
through 54 em of its motion after i t  had first travelled approximately 60 em from the 
point of injection and had reached its asymptotic, constant velocity. The room 
temperature was maintained at 22 f 1 "C. Tests were run at angles (a) of 5,10, 15,20, 
25, 30, 35, 45, 50, 60, 70, 80, 85 and 90" and bubble volumes ( V )  from 5 to 60 ml a t  
intervals of 5 ml. 

3. Results 
The results take several forms. First, observations of the bubble shape as seen by 

the perpendicular camera and from these measurements of two characteristic lengths, 
the width, W ,  and the radius of curvature of the leading edge, R (figure 2). Secondly, 
observations of the bubble shape as seen by a camera photographing the sideview of 
the bubbles. From these pictures measurements of the ellipticity of the bubble as well 
as the radius of curvature of the 'nose'. Thirdly, measurements of the rise velocity, 
presented in appropriate non-dimensional form. 

Figure 2 shows sketches of three moderately large bubbles at small, moderate and 
large angles of inclination in order to present clearly the shape taken by these bubble 
types. A series of top-view photographs is shown in figure 3, forming a matrix for 
angles of 5, 20, 50, 70  and 90" and volumes of 5, 10, 25 and 55ml. The shapes 
sketched in figure 2 are seen to be typical of the shapes for the larger volumes with 
a gradual transition to an almost cylindrical bubble, with its long axis ( W ,  figure 2) 
perpendicular to the direction of motion, a t  the smallest volume where surface 
tension and contact angle effects must become important. I n  these latter cases the 
Weber number (q D,p/a) is of order 10 compared to  O( 100) for the larger bubbles 
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FIGURE 1. Side view of the apparatus. 

.. 

FIGURE 2. The geometry of the bubbles at low, moderate and high angles of tank inclination. 
Showing the definition of various quantities discussed in the text. 



662 T. Maxworth y 

FIGURE 3. Plan view photographs of the bubbles at various values of OL and bubble volume ( V ) .  
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F r a r - H E  4. Side view photographs for V = 60 ml and values of a ( a )  82", ( b )  6 5 O ,  (c)  50°, ( d )  25", 
and ( e )  15'. 

and hcnw one might expect the shape to be affected. Curiously, as we will see, the 
non-dimcnsional velocity of rise is only slightly modified by this difference in shape 
and thc low value of the Bond number. 

Photographs of the side view of a few representative bubbles are shown in figure 
4. Gravitational flattening of the bubble is apparent for the smaller inclination angles 
and larger volumes. the shape is very reminiscent of a form of boomerang for those 
who like visual images of such, moderately complex shapes. At angles close to 90' the 
shapes approach those of 'classical * spherical cap bubbles with centres displaced 
somewhat from the wall (figures 2 c  and 4a). Detailed measurements of these shapes 
will be presented later when the need for them enters more naturally, for the moment 
the qualitative results given above are sufficient as an introduction to this section. 

Vclocaity-of-rise measurements Sorm the core of this presentation. A selection of thc 
raw data is shown in figure 5(a ,b)  where we show data for nine of the fourteen 
inclination angles used. These data must now be made dimensionless in a suitable 
way, one of which we show in figure 6. Here we plot Fr, = lJ,,/(gV~sina)~ as being the 
most logical from both dynamical and dimensional points of view and which is based 
on the independent variables. Rather surprisingly, except for the smallest angle, the 
Froude number is sensibly constant over the whole range of bubble volumes, 
although the scatter in at least one case is somewhat large. As pointed out before this 
result holds for bubble shapes that appear to be rather different as the bubble volume 
is reduced. Only at  the smallest angle (5') can any consistent trend be seen and then 
it only amounts to a f 5 %  change from the mean value. With these observations in 
mind we can then plot Fr, us. a for all the data, where the error bars represent both 
the trend of the Fr, us. V curves and the data scatter. Figure 7 is the resultant plot 
where we show also the Froude number (Fr2) ,  uncorrected for inclination, and the 
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FIGURE 5. Bubble velocity (U,,) as a function of bubble volume for various values of a. 

drag coefficient C, calculated from a modified equation (2) ,  i.e. Cd = 1.65/Fr: where, 
in this case, both the drag and the buoyancy act parallel to the plate and we have 
used the relationship between V and D,  given in 9 1. As a --f 0 Fr, must also tend to 
zero, while Fr, tends to a finite value of 1.6, and C ,  to 0.64. 

Alternative ways of plotting these data are available if one uses dependent 
variables. As a first step we present measurements of the bubble width ( W) versus fl, 
figure 8. For the range of bubble volumes used here the relationship between the two 
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FIGURE 6. Froude number (Fr,) versus bubble volume for several values of u. 

i4 

Angle of inclination, a (deg.) 

FIGURE 7. Fr,, Fr, and drag coefficient (C,) versus angle of inclination. 

is a straight line which, however, does not pass through the origin, i.e. for smaller 
values of V'H the relationship is closer to a quadratic function. Replotting the velocity 
data using W as a lengthscale gives the results shown in figure 9. Where we 
note especially that over a wide range of inclination angles the Froude number 
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FIGURE 8. Bubble width (W), in the plan view, versus VQ for several values of a. 

0 20 40 60 80 90 
Angle of inclination (deg.) 

FIGURE 9. Width-based Froude numbers (Fr,  and Fr,) versus angle of inclination. 

(Fr,) = U,,/(gWsina)i is sensibly constant a t  a value of 0.59 and tends to 0.74 as a 
tends to zero. 

From a fundamental point of view, and to make comparison with the classical 
Davies & Taylor (1950) result mentioned in 0 1, the most interesting aspect of these 
flows is the appearance, in this case too, of a leading edge of essentially constant 
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FIGURE 1 0 . 0 , ~ ,  A, FroudenumberF,based onthe radius ofcurvature oftheleading edgeofthe bubble 
(R) versus angle of inclination for several values of bubble volume greater than 10 ml. 0 , Measured 
values of the ellipticity of the bubble transverse cross-section (c /R) .  Calculated values of c/R ; ---, 
using the matching condition at ql= a; ----, using an integral condition (equation 7). Values of 
F, using the values of c /R calculated from the first two conditions above (--) and (-..-). , Values 
of F ,  calculated from the measured values of c/R ( 0 ). 

radius of curvature (B). Constructing a Froude number based on this lengthscale (the 
open symbols on figure 10) shows that it varied from the well-established value of 
about 0.65 for a = 90' to 1.0 as a+ 0. We present a theory that appears to explain 
this result in $4. 

Finally, we can quantify the changes in the shape of the leading edge of the bubble 
in two ways. Firstly by plotting, on figure 11, the ratio W / R  and at the same time 
calculating the half-angle (8) subtended by the segment of the circle that makes up 
this leading edge, where these quantities are defined on figure 2. Here again we obtain 
the well-established value for a = go", with some scatter, and a maximum angle of 
66O, i.e. the deepest segment, for an inclination around 50", where the velocity, for 
a given volume, is also a maximum (figure 7). Secondly, by assuming that the vertical 

22 FCM 220 
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FIGURE 1 1 .  Bubble geometrical parameter ( W / R )  and the corresponding values of 8 (figure 2) 
versus angle of inclination, averaged over bubble volumes greater than 10 ml. 

FIGURE 12. Experimental matching of an ellipse with c / R  = 0.53, on a photograph of the side view 
of a 60 ml bubble at a = 50'. Showing, also, the radius of curvature of the bubble nose, R,,  for this 
value of c/R. 
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Streamline in plane of plate 
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FIQURE 13. (a)  Bubble geometry related to that of an oblate spheroid moving edge-on to the flow. 
Definition of quantities used in $4. Anticipated bubble shape for values of a x 90". Here the 
effective bubble volume would have been 2V and the bubble rise velocity a factor of S greater than 
the velocity of rise of an isolated bubble of volume V .  As shown in figures 2(c )  and 4(a) this 
configuration is not seen in these experiments. 

cross-section of the bubble is an ellipse, we can measure its ellipticity as a function 
of a. A typical fitting of this type is shown in figure 12 where, for a = 50°, we fit an 
ellipse with c/R = 0.53 to the observed shape, we show also the equivalent radius 
curvature of the nose region, a quantity needed for the theoretical development 
which follows. The values of c /R a t  various angles of inclination (a) are shown on 
figure 10 (the symbols Q). These results then constitute the basic findings of this 
study, comments on their significance follow in §$4 and 5. 

4. Theory 
Using the results shown in figure 10 as a basis we present a theoretical explanation 

that appears to represent many elements of the observations in a moderately 
accurate fashion. It is based on the method used by Davies & Taylor (1950) and at 
the same time points out one limitation of their approach. As shown in figure 13(a) 
we assume that the flow over the leading surface of the bubble is that over an oblate 
spheroid moving parallel to its circular cross-section, with the ellipticity of the 
transverse cross-section depending on the angle at which the bubble rises. 

The flow field and hence the pressure distribution can be found, using ellipsoidal 
22-4 
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coordinates, in Lamb (1945, $ 132). This formulation however is rather cumbersome 
and so we use results due to Munk contained in Durand (1932) in which he states the 
simple rule that ‘the velocity on the surface of any ellipsoid moving parallel to one 
of its principal axes, is given by projecting the maximum velocity onto the tangent 
plane a t  the point of interest.’ The maximum velocity, of course, occurs a t  the elliptic 
equator of the ellipsoid and is constant around it. As a result, by allowing the 
maximum fluid velocity to be represented by kU,, we can calculate the pressure 
distribution along the circular cross-section of our oblate spheroid, i.e. along the 
curve APB of figure 13(a) .  In order for the pressure along this line to be constant, 
since the pressure within the bubble is also constant, the calculated decrease in static 
pressure due to the flow has to be balanced by the increase in hydrostatic pressure. 
We obtain the result that  there is one and only one velocity of rise for each value of 
0 which can satisfy this condition. The resulting equations can be written, assuming 
that the reference level is at the point A ,  as: 

(3 )  +k2G sin2 0 = gR( 1 - cos 0 )  sin a. 

Simplifying gives : 2 -- G -  
gR sin a k2( 1 + cos 0)  ’ 

Following Davies & Taylor (1950) we choose, arbitrarily, to satisfy this equation 

(4) 

Note that for a sphere k = $, and we recover the Davies-Taylor result in this limit. 
Clearly k varies from this value of when a = in to  a value of 1 when a = 0, i.e. 

when the bubble is completely flattened by the effect of gravity, and we ignore 
contact angle and surface tension effects. In  order to calculate values between these 
limits we need to know the ellipticity of the cross-section a t  each value of a. However, 
before performing this calculation we note that, in general, once the ellipticity is 
known, k can be found as follows: 

1 exactly only at  0 = 0 so that :  
uo ,= -  

(gR sin a)z k ’ 

Munk in Durand 

where, in general 

(1932) gives the value of the maximum velocity as 

urn= ( l + -  2 ~ a ~ U o = ( l + k o ) U o ~ k U o ,  

dh JOm (a2 + h)9(b2 + h)+(c2 + A): 
a, = abc 

when the ellipsoid is moving in the direction of the a-axis, and a ,  b,  and c are its semi- 
axes. 

It turns out that k,  is simply the coefficient of apparent mass of the ellipsoid, e.g. 
for a sphere a, = 

Furthermore the relationship between a,, and hence k,  and k, and the body shape 
can be found in several references, the simplest being presented in Lamb (1945, $373, 
equation 14) for the oblate spheroid of interest here, as: 

and k,  = 4. 

(1-ez)fsin-le I -e2  

a, = e3 -(7) 
where e is the eccentricity of the cross-section, e = (R2 -c2)f/R in our notation (figure 
13a).  



Bubble rise under an inclined plate 67 1 

/ 

0.5 

3.4 
h s 

B 

- 
0 .- 

3.3 0 

8 
Y; 

2 
0.2 - 

e 
E i  
2 

0. I 

0 
0.2 0.4 0.6 0.8 I .o 

Ellipticity, c / R  

FIGURE 14. Apparent mass coefficient (k,) and velocity ratio (ilk = U,/U,) versus cross-section 
ellipticity e / R .  

Values of k, and (k,+ l)-l = k-' are a function of c/R as shown in figure 14. 
With this background we are now in a position to calculate the shape of the cross- 

section. Assuming that the curve AQDE can be represented locally by an arc of a 
circle (figure 13a) we can repeat the calculation that led to equation (4) in that case 
along the curve APB. Note that here the distance X of figure 13(a) is given by: 

X = R,sina-R,sin (a-9) .  
Expand the last term, simplifying and equating the hydrostatic pressure to  the 

static pressure due to the flow we find: 

& k 2 q  sin2 9 = gR, sin a( 1 - cos 9) + cos a sin 91, ( 5 )  

but from equation (4) k 2 q  = Rgsina so that:  

R,( (1  - cos 4) + cot a sin 9) = $ sin2 9, 

or 
+-) cot a =$. 

~ , ( i + o l o s p  sin+ 

From this equation we can in principle, calculate RJR at the nose of the elliptic 
cross-section, which is related to c/R as (RJR) = (c2/R2). Unfortunately, the 
Davies-Taylor procedure, of taking the limit q5 + 0, cannot be applied here since the 
result is singular. In fact we note that the case considered by Davies-Taylor, i.e. 
a = in, is the only one which can be calculated using the technique they proposed ! We 
are forced to use a different condition to estimate the ratio RJR. Two obvious 
possibilities come to mind: (i) evaluate the condition a t  q5 = a; (ii) evaluate the 
condition in such a way that the surface pressure is zero in an average or integral 
sense over the whole surface, i.e. from (5) calculate 

R, 1 (1 - cos 9 + cos a sin 9) dq5 = $ 
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the result is: R c2 - 1 [a-$(sin 2a)l - I = -  _ -  
R R2 4 [(a-sina) +cot a( 1 -cosa)] ' 

(7 )  

The results of this calculation and those resulting from assumption (i) are shown 
in figure 10 together with the calculated values of F ,  = U,,/(gR sina)f using figure 14. 
Also shown on this figure are the values of F ,  calculated using the procedure leading 
to figure 14 but using the measured values of clR. 

Note, also, that ( 5 )  can be used to describe the velocity of rise of the elliptical 
bubbles in the experiments of Maneri & Zuber (1974). As in the Davies-Taylor 
calculations two pieces of experimental evidence are needed : the radius of curvature 
of the nose and the ellipticity of the bubble, both of which could be extracted from 
their raw data. 

5. Discussion and conclusions 
Based on the large number of tests presented here it appears that a description of 

the flow based on inviscid dynamics is justified, in particular both the Reynolds 
number and Bond number are in the range where for spherical-cap bubbles this is 
true, except for the smallest volumes. As a consequence, as shown on figure 10, the 
data can be reduced using the radius of curvature of the leading edge as a lengthscale. 
For the spherical-cap case, and our case with a = go", this means that the velocity 
of rise can be found by considering the inviscid, irrotational flow over a spherical 
surface, as already mentioned. Here on applying Bernoulli's equation, including the 
hydrostatic pressure, around the spherical surface and requiring that the resultant 
pressure be constant gives, to the first approximation, the Davies & Taylor (1950) 
result, while a second-order approximation was found by Collins (1966). It is of some 
interest that the velocity of rise is not 21 times the velocity for a freely rising bubble 
based on the expectation that the vertical wall would become a plane of symmetry 
for a complete bubble of twice the experimental volume (figure 13b). The actual flow 
as shown in figure 2(c) is that around an almost complete spherical cap, of volume 
V displaced slightly from the wall. 

In our case for angles of inclination away from 90" the bubble becomes distorted 
into what is, to a first approximation and near the stagnation point, half of an oblate 
spheroid (figure 13a), which remains self similar as the volume is varied at constant 
a. Under these circumstances a modified version of the Davies-Taylor calculation can 
be used to rationalize the experimental data. This approach is successful only at 
moderately large angle of inclination, at the smaller angles the ellipticity of the 
vertical cross-section is underestimated while the Froude number is overestimated. 
This is presumably due to the fact that surface tension and contact angle effects must 
become more important for the low velocities and severely truncated elliptical cross- 
sections involved. 
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